
Connection between conserved quantities of the Hamiltonian and of the S-matrix

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 J. Phys. A: Math. Gen. 26 1091

(http://iopscience.iop.org/0305-4470/26/5/028)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 20:53

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/26/5
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys A: Math. Gen. 26 (1993) 1091-1103. Printed in lhe UK 

Connection between conserved quantities of the Hamiltonian 
and of the S-matrix 

C Jung 
Fachbereich Physik, Universitat Bremen, 2800 Bremen, Federal Republic of Germany 

Received 29 June 1992, in h a l  form November 1992 

Abstract. A conserved quantily K of a Hamiltonian H implies a mnselved quantity J 
of lhe S-matrix only if lhe folward and the backward asymptotic limiu of K are equal. 
A conserved quantily J of S implies a mnsewed quanlily of H only if J is also a 
conserved quantity of lhe free Hamiltonian Ho. Therefore the inrephilily or chaoliciiy 
of S does not necessarily decide the integrahilily of H. 

1. Introduction 

In recent years there has been a growing interest in the integrability and chaos of 
scattering systems (for reviews see [1,2]). The classical case has been analysed quite 
thoroughly and the essential result is the following. When there is topological chaos 
in the phase space, there exists a chaotic saddle consisting of unstable localized orbits. 
Thereby the deflection function and the time delay function become singular on a 
fractal subset of their domain. That is whenever the initial condition of a scattering 
trajectoly lies on the stable manifold of some localized orbit, this trajectoly remains 
in the interaction region and the time delay is infinite and the scattering angle is 
undefined. Of course this only occurs for a subset of measure zero in the set of all 
incoming asymptotes. We can interpret scattering chaos as the Hamiltonian version 
of transient chaos [3-51. 

Most scattering experiments are done on micro systems, where quantum effects 
are qssential, so we need to know how scattering chaos manifests itself in the 
quanGum world. As there are no individual particle trajectories in quantum dynamics, 
it is impossible to investigate the deflection function and the time delay function 
for qe  structure of their singularities. We have to look for more indirect signs 
of chaos. Since the S-matrix is the central object in quantum scattering theory, 
investigating the statistical properties of the 5’-matrix and interpreting random matrix 
behaviour according to the orthogonal ensemble of random unitary matrices as signs 
of chaos was proposed 121. Unfortunately, it became clear [6] that the random matrix 
behaviour of the eigenphases of S is not necessarily related to topological chaos in 
the corresponding classical system. It has been shown, by semiclassical considerations 
[q, that the behaviour of the phases of S is linked to the behaviour of the classical 
iterated scattering map M as constructed in [%lo] and this is explained in more detail 
below. The eigenphase statistics of S shows random matrix behaviour according to 
the COE statistics whenever the classical map is dominated by unstable periodic 
points. In addition chaos in fi is not necessarily linked to the topological chaos of 
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1092 C Jung 

the flow in the phase space generated by H, where H is the classical Hamiltonian 
of the system. So the question arises: what kind of chaos and integrability do the 
quantities fi and S really test for. The integrability of &I will be understood in the 
same spirit as that of a classical conservative map, and the integrabdity of S as that 
of a Hamiltonian operator. 

'lb shed some light on these problems, it would be useful to have a better 
understanding of the connection between the integrability and chaos of S and fi, 
on the one hand, and of H, on the other hand. Therefore we address the following 
questions in this paper. 

(i) Under which additional conditions does the integrability of S or a imply the 
integrability of H? 

(ii) Under which additional conditions does the integrability of H imply the 
integrability of S and A?? 

In section 2 the meaning of integrability of S and fi is considered. Section 3 gives 
the conditions for the transfer of integrability between H and S or U. Section 4 
gives some illustrative examples. In order to give an explanation which is as complete 
as possible, we perform all considerations classically and quantum mechanically in 
parallel. 

2. Integrability of S and M 

For simplicity in sections 2 to 4 let us consider the motion of a point particle in 
a two-dimensional position space under the influence of a time-independent, local, 
short-range potential. We assume that the asymptotic conditions and the asymptotic 
completeness are always fulfilled. 

Let q be the position and p the momentum of the particle. The classical dynamics 
is generated by the Hamiltonian function 

where Ho(p)  = p2/2m is the free Hamiltonian. The quantum dynamics is generated 
by the corresponding operator fl. k t  @(T) be the flow map in classical phase 
space generated by H. It shifts each point along its trajectoiy by the curve parameter 
T (= mn time). Let 'Do(?') be the flow map generated by Ifo. For the classical 
considerations it is useful to introduce the coordinates p ,  01, b, ?L in phase space. p is 
the absolute value of p. Q = tan-'(p,/p,) is the direction of p .  b is the component 
of q perpendicular to p .  U is the component of q parallel to p .  In these coordinates 
Qo( T) has the simple form 

Asymptotes are trajectories of Q o  and along them p , a , b  stay constant. 

H is integrable if there exists a function K on phase space which is independent 
Accordingly we can label asymptotes by giving a set of values of p , a , b .  

of H and fulfils 

{ H ,  I<) = 0. (3) 
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This condition implies that IC o @ ( T )  = K for any T E R. The corresponding 
quantum condition is the existence of an operator i? independent of fl such that 

[A,  fr] = 0. 

The S-matrix is defined as 

(4) 

s = .fi'_d+ (5) 

where the Moller operators are given by 

6, = T~~:mexp(-iA;fT/h)exp(iA,T/fi). (6) 

M = T,T'-m lim 0,(-T)o@(T+T')oO,(-T') .  (7) 

The classical analogue of s' is the scattering map M defined by 

The map M takes any point I in phase space and performs a three-step operation 
on it. Fit we construct the trajectory of 0, through I and follow it backwards 
in time into the incoming asymptotic region. There we switch to the dynamics 
generated by the full Hamiltonian H and let the point run forward in time through 
a full scattering trajectory until it reaches the outgoing asymptotic region. In the last 
step we switch again to the dynamics @ o  generated by H, and let time run backwards 
again. A detailed explanation of this construction is given in Ill] and in section 3.4 

We shall call A4 integrable if there is a function J defined on phase space which 
of [lZ]. 

is independent of H,, such that 

J o A4 = J .  (8) 

Then the phase space is foliated into level surfaces of J and the map A4 transports 
any point of some level surface into a point lying on the same level surface. 

The corresponding quantum condition is the existence of an operator f, 
independent of A,, fulfilling 

[Y,s'] =o. (9) 

The significance of equation (9) ties in the following. There is a set of eigenfunctions 
in which f and s' are both diagonal, i.e. we have a basis in which s' is diagonal 
independent of the wlue of the energy. In this case the matrix elemens of 9, even 
when averaged over the energy, can never fulfil the random matrix properties as 
described in [Z]. In addition, the eigenphases of .?? may cross when some parameter 
(e.g. the energy) is wried and their distribution will \tolate the properties we expect 
for COE statistics. So equations (8) and (9) imply the non-chaoticity of A{ or S. 

The map constructed in equation (7) is not exactly the one constructed in [8- 
101 and used in the semiclassical considerations in [7]. There, a map M has been 
constructed by which incoming asymptotes are mapped into incoming asymptotes by 
the following prescription. Thke any incoming asymptote labelled by ( p ,  a, b). Follow 
the corresponding scattering trajectory until it ends in an outgoing asymptote labelled 
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by (p’,cr’,b’).  Now identify this outgoing asymptote with the incoming asymptote 
having the Same values of ( p ‘ ,  a’, b‘). In total we have a map fi given by 

h i ( p , a , b ) = ( p ’ , a ’ , b ’ ) .  (10) 

We may interpret a as a simplified version of M where we disregard the value of 
T and T‘ in the argument of Bo in equation (7). The time parameter in the free 
motion generated by Hu is irrelevant for all questions concerning the properties of 
initial and final asymptotes as a whole trajectory only, i.e. for properties which are 
not sensitive to the position along asymptotes. 

For the integrability of hi it is relevant whether there exists a function J, defined 
on asymptotes, which fulfils 

J 0 f i = J .  (11) 

Now it is important how integrability of M is connected with integrability of fi. J b 
defined on asymptotes as a whole not on individual points of phase space. Therefore 

is a function of p ,  a, b only, it does not depend on U. So we automatically have 
that 

j O a o =  J .  (12) 

Then the factors Bo in equation (7) are irrelevant for the question of invariance of 
and equation (11) implies 

On the other hand a conserved quantity J of M is a conserved quantity of 6f only 
if J fulfils the additional condition 

J o @ , = J .  (14) 

R r  the semiclassical considerations in [7] the integrability of ,if is important, ie. the 
existence of such conserved quantities of M which are invariant under in addition. 
Therefore we will direct our attention to functions J which fulfil equation (8) and in 
addition the condition (14). 

Some of the classical objects we have already constructed and will construct in the 
following do not exist on the complete phase space but only on points lying on generic 
scattering trajectories having proper in and out asymptotes. Let us denote this part 
of the phase space by P. In particular we have to leave out the localized orbits and 
their invariant manifolds. If the flow B is not chaotic, then this omission does not 
cause any problems. So we restrict our considerations to systems without topological 
chaos in the energy surfaces to positive values of the energy. The other systems, the 
ones displaying scattering chaos, are not interesting in the present context, because 
for such systems neither H nor M can ever be integrable. 

In addition some of the quantum objects we have to deal with are defined on 
scattering states only. Let us denote by R the subspace of the Hilbert space ‘ii which 
consists of scattering states only. 
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3. 'hnsfer of integrability between S and H 

In this section we consider the connection between integrability of M or 3 and 
the integrability of H. It is more convenient to work first in the direction from 
integrability of A4 or to the integrability of H, even though the other direction is 
the more important one for applications. 

Let us begin with the classical statement formulated as follows. 

ProposiCion IC. Let there be given a function J fulfilling equation (8). If J fulfils 
equation (14) in addition, then the function 

K = T - W  lim J o @ , ( - T ) o @ ( T )  (15) 

whose domain is P, fulfils the two conditions: 
(a) K is a conserved quantity of H; 
@) the forward and backward asymptotic limits of I< are the same, i.e. K fulfils 

the equation 

T-CO lim I C o @ ( T ) o @ , , ( - T )  = T-W lim I < o @ ( - T ) o ~ P , ( T ) .  (16) 

proof of W .  

IC 0 @ ( t )  = lim J 0 @,( T )  0 @( -T)  0 @ ( t ) .  
T-W 

Fmt we use the property @(a) o @ ( b )  = @(a + b) to transform this expression into 
the form 

lim J o @ , , ( T ) o @ ( - T + t ) .  
T-CU 

Next set T = T' + t giving 

lim J o @,,(T' + t )  o @(-T') = lim J o @,,(t) o @,(T') o @(-TI). 

i.e. equation (14), to absorb the factor 

TI-- T'-W 

Finally we use the invariance of J under 
@"( t )  into J and obtain the mal expression 

l i  J 0 @"(TI) 0 @(-T') = I<. 
T'-m 

proof of (b). 

lim K o @ ( T )  o @,,(-T) = lim 

= J o  M = J .  

lim J o a,,(-T') o @(T')  o @ ( T )  o @"(-T) 
T-CU T-wT'-m 

Here we insert identity maps in the form id = @,(-T) o @,(T) and id = 
@(T)  o @ ( - T )  to obtain 

lim J o a,,(-?') o Qu(T) = lim J o @"(-T) o @ ( T )  o cI)(-T) o @,(T) 
T-CO T-CC 

= lim Z C o @ ( - T ) o @ , , ( T ) .  
T-W 

The corresponding quantum result is as follows. 
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Proposition lQ. Let there be given an operator .f fullilling equation (9). If 9 fulfils 
[.?, &,] = 0 in addition, then the operator 

k = 6,  sslt 
whose domain is R fulfils the two conditions: 

(a) l? is a conserved quantity of 8; 
@) the forward and the bachward asymptotic limits of k are equal, i.e. k fulfils 

the equation 

n tkn-  = n p n , .  (18) 

In general we cannot make any statement about an extension of I? to an operator 
defined on the whole of H. 

Proof of (U). Here we use the intertwining relations [13,14] 

8s1, = h*A, (19) 

and their adjoints hL& = && where the Hamiltonian operators & and A,, are 
assumed to be self-adjoint and obtain 

k8 = S1,Ynp = Ci,Y8,,Zf,Plt. 

Because of our assumption on 3 we have SI?,, = &,,y giving 

Proof of (b). 

np?n, = np+sn\n, .  
Now we use flin, = 3 to see that this expression is just 9. Next we use our 
assumption that equation (9) is fulfilled to obtain 

9 = SYS' = n'n+Ynp- = ntk-n-. 
Remnrk. In order to construct k in equation (17) 9 is transformed by 6, apparently 
preferring one direction in time. However, from (b) of the proposition and its proof 
it becomes evident that n-sh: = h,.?h\. Therefore we could have taken the 
definition k = fZ-.fh'_ instead of equation (17) to obtain the same operator k. In 
this way the symmetry between future and past is maintained. 

Next we come to the reverse direction. The classical result is formulated as 
foliows. 
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Proposition X .  Let there be a function IC fulfilling equation (3). We define the 
functions Jt , J- by 

J + - - T-m lim I C o @ ( - T ) o @ , ( T )  

J- = T-m l i  Ko@(T)o@,( -T ) .  

(20) 

(21) 

We call J,, J -  the forward and backward asymptotic limits of IC. If these two limits 
are equal, Le. if 

J+ = J- (22) 

then we define the function J = Jt = J -  which fulfils the two properties 
(a) J is a consewed quantity of M ;  
@) J is a conserved quantity of H,. 

Roof of (4. 

J o  A4 = lim lim lim KO@( -7') o@,,( T) o e,,( -7") o@( 7'') o O( T") o @,,( -T") 
T-+m T'+m T"+m 

= lim I( o @(T")  o @,(-T") = J .  
Til-m 

Proof of P ) .  

J o @ , ( t )  = lim K o @(-T) o @,(T) o @,( t )  
T-CC 

= lim K O  @ ( - T )  o cPu(T+ t) = !im IC o @(-T + t )  o @,(T') 

= lim I~o@(t)o@(-T')o@,(T) = lim ICo@(-T ' )o@,(T ' )  = J .  
T-CC T -m 

T'-+CC TI-m 

The corresponding quantum statement is 

Proposition ZQ. Let there be an operator i? fulfilling equation (4). We define the 
operators S,, Y- as 

Yt = s2t_Ic-p2- (23) 

9- = fi:i?s2,. (24) 

We call S,, .f- the forward and backward asymptotic limits of E. If these two limits 
are equal, Le. if 

S, = S- (25) 

then we define .f = S, = 9- which fulfils the two properties: 
(a) 9 is a wnsetved quantity of 9; 
@) S is a conserved quantity of R,. 
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Remark. Before we prove these statements let us make a remark about the 
definitions (23) and (24). h, is defined on the whole Hilbert space 71. Its range is 
R. Because of equation (4) the operator I? conserves the energy, Le. I? applied to 
any scattering state again gives a pure scattering state and the result does not contain 
any bound state parts. Therefore 61 can be applied to the range of Pfl, and the 
operators S, and 3- are well defined on the whole of 71. Similar considerations will 
hold in several other places in the following. 

proof of (a). 

33 = 6thtA:kh+ = At_I?h, = ht_fitl-htA+ = 3.9. 

Note that applied on vectors &om R the product h,6: acts like the unit operator 
even though A, are not unitary operators on the whole of 7 i .  

prwf of (b). 

SA, = S2tkh-A" = h2tkAsZ- = sltAfch- = A,At_fifl- = A"'?. 
Now we have finished the proof of the equivalence of the following two statements 
A and B. 

(A) N has a conserved quantity with equal forward and backward asymptotic 
limits. 

(B) d l  or S has a conserved quantity which is also a conserved quantity of No. 
In passing let us mention a further observation which is not essential for our main 

problem but which may be interesting in itself. In the proof of part (a) of proposition 
2Q the condition (4) was never really used. Therefore the following holds true. 
Whenever we find an operator fc with c R and which fulfils equation (IS), then 
the operator 3 = h!. ftfi- = tl:I?fi, commutes with S .  

4. Examples 

(i) From the well known examples of symmetries of the S-matrix as presented in the 
text books [13,14], we are familiar with the following situation. There is a conserved 
quantity I? fulfilling equation (4) and this I? is a conserved quantity of the free 
motion in addition, i.e. k fulfils [I?,&,] = 0. Then jt = '?- = fi and the 
condition (25) is fulcllled trivially. Examples of this type are the angular momentum 
for rotationally symmetric potential, the parity, time reversal etc. 

(ii) Now we present an example where { H,, A-] + 0 but condition (22) is satisfied. 
Choose V = (cos&)'/2r2 where r,& are polar coordinates in position space. A 
conserved quantity of H is h' = Lz f (cos +)* where L is the angular momentum. 
Direct computation gives { H, IC) = 0, { H,, 1;) = 2L cos &sin&/? # 0. ?b 
compute the asymptotic limits of IC consider that far away from the origin in the 
asymptotic region we have C$ -+ a along outgoing asymptotes and & i a - n along 
incoming asymptotes. Therefore cos& = x / r  -t p , / p  along outgoing asymptotes 
and cos - - p , / p  along incoming asymptotes. Therefore 

J = J+ = J -  = Lz -+ p i / p 2 .  
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Considering that L and p are conserved under the free flow 0, it is evident that 
J o 0, = J. In a numerical plot of the iterated scattering map M the asymptotic 
a/b-plane is foliated into invariant level lines of J. 

Quantum mechanically the corresponding results are obtained as follows. 

fi = L 2 +  f 2 / ( 2  + #). 

In this expression no problems of ordering occur. Because of [fi, I?] = 0 we find 

exp(iI?T/h)fiexp(-iI?T/ta) = k for any T E 119. 

Next we use the well known relations 

exp(-iI?,T/h)Gexp(iA,T/h) = G-fiT/m 

exp(-iA,T/h)fiexp(iA,T/ft) = f i  

exp(-iA,T/ta)eexp(ih,T/A) = E 

to obtain 

exp( -iA,T/h) exp(iAT/h) k exp(-iBT/h) exp(ih,T/h) 

= L2 4- (f - $,T/m)’ / [ (E - $*T/m)* + (c - $,T/7r~)~] 

In the h i t  T - *CO this expression becomes 

In the final expression there are no ordering problems even though they occur in wme 
intermediate steps. Fortunately they are not important for our present considerations. 

The integrability of the scattering process represented by M or S can be 
understood as follows. The foliation of the phase space into level sets of J is 
invariant under the flow a,, i.e. any trajectory of H, stays in a level set of J. In the 
Same way the foliation of the phase space into level sets of h‘ is invariant under the 
flow a, ie. any trajectory of H stays in a level set of K .  The essential property of 
J and K is that in the asymptotic region the numerical values of J and IC. coincide. 
Thereby the foliations generated by J and K also coincide in this region. Any 
scattering trajectory lies in a level set of h‘ but in general it does not lie in a level 
set of J. In the interaction region the value of J is not constant along the scattering 
trajectories. However, and this is the important point, in the outgoing asymptotic 
region any scattering trajectory comes back to exactly the same numerical value of J 
at which it has started in the incoming asymptotic region, regardless of the values of 
J in between. This is guaranteed by the property that J is the forward as well as the 
backward asymptotic limit of K. Therefore the three-step mapping process described 
by M maps any point of phase space to a point lying on the same level set of J. 

(iu) A very illuminating example is provided by the energy. I? is certainly a 
conserved quantity under the motion generated by I?, but in general [I?, I?,] # 0. 
If we set k = I? then the condition (U) is always fulfilled because the intertwining 
relations (19) guarantee that j+ = 9- = I?,. Therefore h, is a conserved quantity 
of 9, a well hown result [13,14]. 
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and (25) as follows. There are operators E n d  I? fulfilling the two equations 
In analog, to the situation for the ener we may reformulate the conditions (17) 

0,s = kA, (26) 

A-9 = kh-. (27) 

We call these equations generalized intertwining relations and call the operators k 
and .f related by an intertwining relation. 

(iv) Now we provide an example, where condition (22) or (25) is not fulfilled. 
Choose V = (cos ++ c)/2$ where the constant c should be taken as c > 1 in order 
to avoid an attractive singularity of the potential which would create unnecessary 
complications. Direct computation shows that K = L2+m q5 is a conserved quantity 
of the full motion. Along the same pattern as in example (U) we obtain the asymptotic 
limits of K as J+ = L2 + p , / p ,  J- = Lz - p , / p .  Therefore li does not imply 
integrability of M or S. 

Could there be another conserved quantity K' of H which provides a related 
consewed quantity J' of A4 or S? Numerical evidence speaks against this possibility. 
Because the energy is a conserved quantity in any Hamiltonian system we can restrict 
the considerations to one particular value of E. For fixed E the set of all asymptotes 
is a two-dimensional manifold, and for its coordinates we use b and a. Figure 1 gives 
the iterated application of A? to several initial points (marked by crosses) in the a / b  
plane. Clearly we see chaotic behaviour in a strip of the plane. The iterated points 
of one initial point are not restricted to the level line of any function J .  Because the 
potential is homogeneous of degree minus two in the position coordinates, the plot 
of a is independent of the value of E. 

- 3 . 0 1 1  
0 628 

Angle 

Figure L Iterated scattering map for example v t e m  (iv) and parameter value c = 2. 
A few hundred iterates of some initial points (marked ly cmsses) are plolted. 

For the quantum system in figure 2 we give a plot of wme eigenphases of the 
symmetric part of S as a function of the potential parameter c. In the quantum case 
the parameter c can start at c = 0.93, since the lowest eigenvalue of k is larger 
than -0.93. We see avoided crossings giving a numerical indication that 9 is not 
integrable. 9 is not diagonal in a representation in eigenfunctions of l?. 
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Figure 2 Plol of =me eigenphases of the sy"e1ric pan 01 tlie S-matrix as a function 
of the ptential parameter c for example system CN). 

Therefore we have found a completely integrable system providing a chaotic 
scattering map and S-matrix. Some more systems of this type are presented in 
PI. 

(v) Finally we give an example of a function J which is invariant under M but 
which does not fulfil the additional condition (14) and which is therefore not an 
invariant of a. 

"hke any system with rotationally symmetric potential. As before, asymptotes 
are labelled by p , a , b .  Following scattering trajectories from ingoing to outgoing 
asymptotes we get the mapping A? : (p, a, b )  -+ (p', a', b'). Because of consemtion 
of energy p' = p and because of conservation of angular momentum b' = b. 
a' = a + B ( p ,  b) where B ( p ,  b) is the scattering angle. The map M acts like 

M ( p , a , b , u )  = ( ~ , a + e ( p , b ) , b , u - A ( ~ , b ) ) .  (28) 

Here A ( p , b )  = p D f ( p , b ) / m  where D i ( p , b )  is the time delay of a scattering 
trajectory with these values of p and b. Because of the rotational symmetry of the 
system there is no topological chaos in this system. Therefore D f  is not a chaotic 
function and A is at least piecewise smooth. So we can define a function J by 

J ( P ,  0, b, U )  = s in [2au /A(p ,b ) lg (Ab  b ) ) .  (29) 

For g(z) we can take any function which goes to zero sufficiently fast, when its 
argument goes to zero. The function g is included in order to avoid trouble at places 
where A - 0. This always happens when b + 00. Because of the periodicity of J 
with period A in its argument U we obtain using (28) 

J o M ( p , a , b , ~ ) =  J ( p , a + e ( ~ , b ) , b , u - A ( p , b ) ) =  J ( p , a , b , l & )  

for any (p, a, b, U) E P, ie. J is an invariant of M. However, 

J(P, a 7  b, U )  f J(P, Q, 6, 'U. + 4 
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for most d E R. Therefore J o @" # J and condition (14) is not satisfied. Obviously 
a function K constructed from J by equation (15) would not be constant along 
trajectorics of @ either. 

Of course, by (29) we have made a strange choice for J. If we had taken J' = b, 
then J' would fulfil (14) and the corresponding K' would be essentially the angular 
momentum, which is a good conserved quantity of H. This example shows that 
condition (14) is essential in order to obtain a useful conserved quantity of M or S. 

5. Arbitrary number of degrees of freedom 

So far all results have been given for the case of two degrees of freedom. Finally we 
give the corresponding statements for the case of n degrees of freedom. 

The following two conditions are equivalent 
(i) The system is completely integrable, i.e. there are n independent functions 

Ii, on phase space or operators where H or is one of them. They fulfil 
{ K , ,  K,} = 0 or Ik;, k,] = 0 for all i, j. In addition, for each of these Ki or ki 
the forward and backward asymptotic limits are equal. 

(ii) There is a set of n independent functions J ,  or operators ji (they are the 
asymptotic limits of the ICi from condition (i)) which are conserved quantities of M 
or 3, Le. J, o M = Ji or [ji, 3.1 = 0 for all i. H, or fi, is one of them. In addition, 
they fulfil { J i , J j ]  = 0 or [ j i , f j ]  = 0 for all i , j .  Because H, is one of the Ji, all 
of them are constants of the free motion. 

The proofs of these statements are verbatim repetitions of the proofs we have 
given for the case of two degrees of freedom. The whole sets of ki and .f, are 
related by the intertwining relations fi*J, = pin, for all i. 

6. Final remarks 

The main result of all our considerations is the following. A conserved quantity K 
of the Hamiltonian implies a consewed quantity J of the S-matrix only if IC- and J 
are related by a generalized intertwining relation. This is the case only if the forward 
and backward asymptotic limits of K are equal. Therefore a check of integrability of 
S is not a sufficient test for integrability of H. It only tests for a restricted type of 
integrability. As example (iv) in section 4 and some more examples of this kind and 
there quantum counterparts in [6] demonstrate, an integrable Hamiltonian can lead 
to a chaotic map M. 

As has been shown in [6], a good scattering test for integrability of H is an 
investigation of the energy dependence of the cross section. Ericson fluctuations 
caused by very many overlapping resonances are a good indication of classical chaos. 
These results are not surprising in view of the following. The properties of 3 and, in 
particular, the scattering phases are created by a delicate interplay between the full 
motion generated by H and the free motion generated by H,. In most cases it is 
hard to disentangle any properties of S into the contrihutions reflecting properties of 
H and the ones reflecting properties of H,. However, we usually choose a H ,  so that 
it does not produce resonances, e.g. when we choose the kinetic energy for H,. Then 
all resonances are only caused by the structure of H. Accordingly, the distribution 
of resonances is one of the few properties of S where the disentanglement between 
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effects coming from H and H, is trivial. It might be an interesting task to investigate 
the resonance structure of 9 in a system, where H and Hu both create resonances. 
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